Surname

Other Names

WJEC CBAC

4473/01

GCSE

ADDITIONAL SCIENCE/PHYSICS

PHYSICS 2 FOUNDATION TIER

A.M. THURSDAY, 23 May 2013

l hour

	For 1	Examiner's use	only
	Question	Maximum Mark	Mark Awarded
	1.	7	
	2.	9	
	3.	6	
	4.	7	
	5.	7	
	6.	12	
r.	7.	12	

60

Centre

Number

Candidate

Number

0

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

If you run out of space, use the continuation pages at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

A list of equations is printed on page 2. In calculations you should show all your working.

You are reminded that assessment will take into account the quality of written communication (QWC) used in your answer to question 7(i).

Total

Equations

power = voltage × current	P = VI
$current = \frac{voltage}{resistance}$	$I = \frac{V}{R}$
speed = $\frac{\text{distance}}{\text{time}}$	
acceleration [or deceleration] = $\frac{\text{change in velocity}}{\text{time}}$	$a = \frac{\Delta v}{t}$
acceleration = gradient of a velocity-time graph	
momentum = mass × velocity	p = mv
resultant force = mass × acceleration	F = ma
force = $\frac{\text{change in momentum}}{\text{time}}$	$F = \frac{\Delta p}{t}$
work = force × distance	W = Fd

SI multipliers

Prefix	Multiplier	
m	10 ⁻³	$\frac{1}{1000}$
k	10 ³	1 000
М	10 ⁶	1 000 000

4473 010003

BLANK PAGE

3

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

(4473-01)

Examiner only A nuclear reaction that takes place in a nuclear reactor is shown below. Use the diagram *(b)* to help you answer the questions that follow. $\mathbf{r}_{0}^{1}\mathbf{n}$ krypton ${}^{1}_{0}n$ ²³⁵₉₂U ${}^{1}_{0}n$ neutron 1_0n ²³⁵₉₂U $-\frac{1}{0}n$ ${}^{1}_{0}n$ ²³⁵₉₂U barium ${}^{1}_{0}n$ 4473 010005 (i) Write down the name of this type of reaction. [1] Name one waste product of this reaction. (ii) [1] *(c)* State two reasons why waste radioactive materials from nuclear reactors need to be stored safely for a long period of time. [2] 1. 2. 7

	(iii)	Draw the graph line for the resistor on the grid opposite. [1]	Examine only	r
<i>(b)</i>	(i)	Use the equation:		
		resistance = $\frac{\text{voltage}}{\text{current}}$		
		to calculate the resistance of the resistor when the voltage is 9.0 V. [3]		
		Resistance =		
		Unit of resistance		
	(ii)	Use an equation from page 2 to calculate the power of the resistor when the voltage is 9.0 V. [3]		
		Power =		3 007
		Unit of power		44/ 010
			9	

3.	Radi neuti	oactive carbon-14 is an isotope of carbon. It is produced high in the atmosphere when yon (n) combines with a nitrogen (N) nucleus, releasing a proton (p) in the process.	examiner only
	Carb	on-14 written in the form ${}^{A}_{Z}X$ is ${}^{14}_{6}C$.	
	<i>(a)</i>	Write down carbon-12 in the form ${}^{A}_{Z}X$.	[1]
	(<i>b</i>)	The nuclear reaction that produces carbon-14 is written below.	
		${}^{1}_{0}n + \cdots {}^{7}_{7}N \longrightarrow {}^{14}_{6}C + {}^{1}_{1}p$	
		Fill in the missing numbers in the equation above.	[2]
	(c)	Complete the following sentences with the number of particles, if any, in a ${}_{6}^{14}$ C nucleus	[3]
		A ¹⁴ ₆ C nucleus contains protons.	
		A ¹⁴ ₆ C nucleus contains neutrons.	
		A ${}_{6}^{14}$ C nucleus contains electrons.	
			6

4473 010009

BLANK PAGE

9

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

<i>(b)</i>	The	car travels on at 25 m/s.	Examiner only
	(i)	Use the equation:	
		time = $\frac{\text{distance}}{\text{speed}}$	
		to calculate the thinking time for the driver at this speed.	[2]
		Time =	8
	(ii)	Use the graph to find the total stopping distance when the car travels at 25 m/s.	
			[2]
		Total stopping distance =	m
	(iii)	State one factor that would decrease the braking distance at 25 m/s.	[1]
	•••••		
			7
]
		Trum or	'0r
		© WJEC CBAC Ltd. (44/3-01)	UI .

5. A girl cate	hes and stops a ball of mass 0.15 kg which is moving at a speed of 20 m/s.	Exan
<i>(a)</i> (i)	Use the equation:	
	$momentum = mass \times velocity$	
	to calculate the change in momentum of the ball. [2]]
	Momentum change = kg m/s	S
(ii)	Use an equation from page 2 to calculate the force applied by the girl if the ball is stopped in 0.5 seconds. [2]	s]
	Force =	1
(iii)	The girl now doubles the time taken to stop the ball by moving her hands towards her as she catches it. What is the size of the force now?	s]
	Force =N	1

(b)	In sc redu	ome situations people have to be stopped suddenly and safely. The force on them is ced by increasing the stopping time.	Examiner only
	(i)	Name a situation in which this happens. [1]	
	(ii)	Describe how the stopping time is increased. [1]	
	······		

(a)	(i)	State what y	ou understa	nd by the sta	atement "the	half-life of c	carbon-14 is	6000 [1]
	(ii)	Explain how	carbon-14 de	ecays by beta	a emission.			[2]
(b)	The belo	activity of an a w. (All values l	amount of ca have been ad	urbon-14 redu justed for ba	uces with time ckground rad	e in the way s liation.)	hown in the	table
	Tir	me (years)	0	6000	12000	18000	24000	
	Ac	tivity (c/min)	800	400	200	100	50	
	(i)	Use the infor	rmation in th	e table to plo	ot a graph on t	the grid below	<i>W</i> .	[3]
vity								
vity in)								
vity in) 1 000 -								
vity in) I 000 -								
vity in) 1 000 -								
vity in) 1 000 - 800 -								
vity in) 1 000 - 800 -								
vity in) 1 000 - 800 - 600 -								
vity in) 1 000 - 800 - 600 -								
vity in) 1 000 - 800 - 600 -								
vity in) 1 000 - 800 - 600 - 400 -								
vity in) 1 000 - 800 - 600 - 400 -								
vity in) 1 000 - 800 - 600 - 400 - 200 -								
vity in) 1 000 - 800 - 600 - 400 - 200 -								
vity in) 1 000 - 800 - 600 - 400 - 200 -								

			Examir
	(ii)	Use the graph to give the activity from the carbon at 16000 years. [1]	only
		Activity = c/min	
	(iii)	Calculate the number of years after which carbon dating proves to be impossible. [2]	
		Number of years =	
(c)	(i)	A sample of bone taken from a skeleton at an archaeological site gave a reading of 32 c/min. An identical mass of bone in a living animal gives a reading of 80 c/min. Use the graph to find the age of the skeleton. [1]	
		Age = years	
	(ii)	State the method you used to arrive at your answer and show it on the graph. [2]	
	<u>.</u>		
	••••••		
			12
]

© WJEC CBAC Ltd.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Examine only

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Examine only

